
Computing at
CERN - II

Summer Student Lectures 2002
Jamie Shiers

http://cern.ch/jamie/

Lecture II

• Computing at CERN Today

!Software at CERN Today

• The future & LHC Computing

Introduction
• For a long time it puzzled me how

something so expensive, so leading edge,
could be so useless…

• and then it occurred to me that a
computer is a stupid machine with the
ability to do incredibly smart things, …

• while computer programmers are smart
people with the ability to do incredibly
stupid things.

• They are, in short, a perfect match.
Bill Bryson: "Notes from a Big Country".

Homework

Review of homework from lecture I

Exercise I

• Implement a Unix utility (grep,
cron, …) according to man
specification

• You don’t actually need to do the
exercise – just pretend you have!

Software

Producing high-quality software is:

• Far from easy

• Far from cheap

• Still not a solved problem

Anyone can program?

• “Everyone can be taught to sculpt:
Michelangelo would have had to be
taught not to. So it is with great
programmers.”

Overview

• Software Engineering

• Software Process

• Real examples from CERN

Disclaimer

• CERN and its collaborators have
produced a vast quantity of high-quality,
well documented software

• Well disciplined approaches are in use in
many areas of CERN

• Many people have devoted significant
effort to improve the overall software
process at CERN

Some Large Producers…

• Microsoft

• Oracle

Empower people
through great software

"I sense much NT in you!
NT leads to Blue Screen.
Blue Screen leads to downtime,
downtime leads to suffering...
NT is the path to the darkside!"

Why software quality?

• Airbus / BMW

• LHC data acquisition & processing

le
ve

l 1
- s

pe
ci

al
 h

ar
dw

ar
e

10
0

M
Hz

(1

00
0

TB
/s

ec
)

le
ve

l 2
- e

m
be

dd
ed

 p
ro

ce
ss

or
s

le
ve

l 3
- P

Cs

75
 K

Hz
 (7

5
G

B/
se

c)
5

KH
z

(5
 G

B/
se

c)
10

0
Hz

(1
00

 M
B/

se
c)

DB

Software Engineering

• When discussing salary, its a profession;
• When discussing , Bugs, Errors and

Liability, its a job;
• When discussing theory, its science;
• When discussing methods and practice,

its engineering;
• When discussing the work and the work

of others, its a craft;
• When managing it, its an art.

Software as a Craft

• Software as a University

• Software as Hollywood

• Software as Construction

Software Engineering in
HEP – The Reality

• Jürgen Knobloch, Computing in High
Energy Physics, Tsukuba 1991

• “In spite of all efforts, the most
valuable tool is still a good
Symbolic Debugger…”

Software Complexity

• Program complexity grows until it
exceeds the capability of the
programmer to maintain it.

• There are two ways of constructing a
software design: one way is to make it
so simple that there are obviously no
deficiencies and the other way is to
make it so complicated that there are no
obvious deficiencies. The first method is
far more difficult.

Data and Computation for
Physics Analysis

batch
physics
analysis

batch
physics
analysis

detector

event
summary

dataraw
data

event
reconstruction

event
reconstruction

event
simulation

event
simulation

interactive
physics
analysis

analysis objects
(extracted by physics topic)

event filter
(selection &

reconstruction)

event filter
(selection &

reconstruction)

processed
data

R
A
W

E
S
D

A
O
D

TAG

randomseq.

1PB/yr (1PB/s prior to reduction!)

100TB/yr

10TB/yr

1TB/yr

Data

Users

Tier0

Tier1

Size of CERN Software

CMS Offline Software

R.Wilkinson
Deputy

Object Persistancy

L.Silvestris
Deputy

Testbeams

V.Innocente
Architect

V.Innocente
Framework

V.Innocente
Utilities

T.Cox
Muon endcap

A.Vitelli
Muon barrel

F.Behner
Calorimetry

L.Taylor
Visualization

E.Meschi
Trigger

L.Silvestris
Testbeam

C.Seez
Electron PG

U.Gasparini
Muon PG

T.Todorov
Tracker

S.Wynhoff
Generators

A.Caner
b/tau PG

S.Eno
Jet PG

S.Wynhoff
Examples

T.Todorov
CommonDet

Sub-System Coordinators

C.Williams
Librarian

J-P.Wellisch
SW Process Manager

D.Stickland
Project Manager

Software Cop-Outs
• That's a feature, not a bug.
• If there are no questions, everyone

must be happy.
• If there are no bug reports then noone

is using it.
• We've lost the source code.
• We're too busy to document that.
• It must be a hardware problem.
• That could never fail -- don't bother

testing for it.
• It's fixed, but is waiting for the next

release cycle.

Software Cop-Outs
• That's a feature, not a bug.
• If there are no questions, everyone

must be happy.
• If there are no bug reports then noone

is using it.
• We've lost the source code.
• We're too busy to document that.
• It must be a hardware problem.
• That could never fail -- don't bother

testing for it.
• It's fixed, but is waiting for the next

release cycle.

The Software Process

• “The software process is the set
of tools, methods and practices
that are used to produce a
software product.”

Watts S. Humphrey, Managing the
Software Process

Capability Maturity Model

• The mortal struggle of great beasts
in the tar pits…

Software Development
The Mythical Man-Month

Frederic Brooks

Software Scheduling

• 1/3 planning
• 1/6 coding
• 1/4 component testing
• 1/4 full system testing
From “The Mythical Man Month”

!The real cost is in maintenance &
support!

The World’s First Programmer

Grace Hopper

• Invented world’s first compiler – A0
• Discovered world’s first computer

bug

Example I

The CERN Program Library:
CERNLIB

CERNLIB

• Arguably CERN’s most famous “product”
prior to the Web
– And it included CERN in the name…

• Written over nearly 40 years by at least
as many authors
– Try calculating the cost! €100M or more!

• Mainly Fortran, but some assembler,
Pascal, C, …

• Used by virtually all HEP experiments
world-wide, including those at the LHC!

• No defined software process
– But steps in that direction…

CERNLIB: What is it?

• Libraries (initially) and packages
aimed at scientific computing
– Histogramming, fitting, mathematical

routines, graphics, analysis, detector
simulation, event generators …

• “Tool kit” for physics software
applications

CERNLIB cont.
• CERN Program Librarian – many

incarnations
• Source code management: now CVS +

cpp; previously home-grown cpp-
equivalent

• Code conventions: must compile
• Build procedures: moved to make in

1990s
• Release procedures: old, pro & new areas

– User testing of new area for weeks prior to
release

Hall of fame: Make

• Introduced to the world with Unix
– Along with SCCS – “forerunner” of CVS

• Significant impact on software build
process

Example II

AIS Applications

AIS Applications

Paper Purchase Order

Web Purchase Order

Web Leave Request
User’s viewManager’s View

Standards and Inspections

• All Code must conform to coding
standards
– Informal Code Inspections

• With follow-up

http://edh.cern.ch/CodingStandards
For more information see:

Example III

LCG Applications
Anaphe; Geant-4; ROOT; CMS, …

http://wenaus.home.cern.ch/wenaus/peb-app/

LCG Applications

• Anaphe: a C++ replacement for
CERNLIB

• GEANT4: a C++ detector simulation
programme

Anaphe releases
• Do not use CERNLIB-style old / pro / new

• Limited flexibility (esp. with shared libs)
• Bad “recognisability” : “pro” in outside

institutes may differ from “pro” at CERN (and
even within institutes)

• " use version numbers
• Version numbers for each package

• Component based architecture allows for
(semi-) independent development

• Version numbers in library names
• lib<pkg>.<vers>.so (link: lib<pkg>.so ->

lib<pkg>.<vers>.so)
• Coherent set of versioned packages as

“release”

Geant4 releases
• Major releases

– include major changes and updates, including public
interface changes. May require porting of users’ code

– represented by major revision number XX in XX.YY
• Minor releases

– include updates, bug-fixes and new features NOT
affecting public interfaces in the code

– represented by minor revision number YY in XX.YY
• Public patches

– include exclusively bug-fixes to a public release
• Development releases

– include “state-of-art” development and fixes not yet
submitted to acceptance as public supported release

Software development: the
traditional approach

• Correcting software errors very
expensive: errors should not be in the
code in the first place
– get it right the first time

• Sound traditional engineering
techniques must be applied

• This leads to Big-Design-Up-Front
– Waterfall, SEI CMM, and other techniques

were developed for this purpose
• They are High ceremony processes

An analogy: building a
skyscraper

• Detailed architectural and structural
designs are needed

• Specialized architects and engineers
create the design

• The building is made by technicians
and workers, following the design

• The skyscraper is made right the first
time!

What should we take from
XP?

Pair Programming

What should we take from
RUP?

• We should follow all the suggested
"best practices"
– Develop iteratively.
– Manage requirements.
– Use component architectures.
– Model visually.
– Verify quality.
– Control changes.

Summary

Summary

Producing high-quality software is:

• Far from easy

• Far from cheap

• Still not a solved problem

Lecture III

• Computing at CERN Today

• Software at CERN Today

!The future & LHC Computing

Homework

Exercise II

• What will the CERN Computing
environment look like in 10 years?

• Hint: some of the key elements
exist today, albeit possibly in a
different flavour.

End Lecture II

